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Path Stability of a Crack with an Eigenstrain
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A slightly curved crack with an eigenstrain is considered. Solutions for a slightly curved crack

in a linear isotropic material under asymptotic loading as well as for a slightly curved crack in

a linear isotropic material with a concentrated force are obtained from perturbation analyses,

which are accurate to the first order of the parameter representing the non-straightness. Stress

intensity factors for a slightly curved crack with an eigenstrain are obtained from the pertur-

bation solutions by using a body force analogy. Particular attention is given to the crack path

stability under mode I loading. A new parameter of crack path stability is proposed for a crack

with an eigenstrain. The path stability of a crack with steady state growth in a transforming

material and a ferroelectric material is examined.
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1. Introduction

Curved cracks are frequently observed since the
path of the fracture is generally curved under load-
ing of mixed mode type. The problem of curved
or kinked cracks in elastic materials has thus been
extensively investigated. Several fracture criteria
have been proposed in order to determine the fa-
vored orientation of the crack extension under
loading of mixed mode type. More detailed exposi-
tion of the results of studies on the kinked crack
in an elastic material by many researchers can
be found in Hutchinson and Suo (1992). Curved
cracks have been also observed in ferroelectric
ceramics (Uchino and Furuta, 1992; Tan and
Shang, 2000). The problem of curved cracks in
solids containing a region in which eigenstrains
such as transformation strains and domain switch-
ing strains are prescribed, however, has received
little attention.
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The issue regarding the effect of 7 -stress on
the stability of the crack path has been raised in
the literature. Cotterell and Rice (1980) proposed
the T -stress theory on the local stability of the
crack path. They showed that the straight crack
path under mode I loading is stable for negative
T -stress and unstable for positive T -stress. Sub-
sequently, this stability concept was extended by
Sumi et al.(1985) for the effect of the change of
the stability with increasing crack length along a
curved trajectory. As a crack in a material with a
stress-induced transformation or in a ferroelectric
material grows, the stress fields at the advancing
crack tip will induce further transformation or
domain switching. However, the path stability of
the crack with the eigenstrain induced by trans-
formation or domain switching in a zone near
the crack tip has not yet been solved in the li-
terature.

The purpose of this study is to investigate the
path stability of a crack with an eigenstrain. The
asymptotic problem of a slightly curved crack in
a linear isotropic material under mechanical load-
ing is analyzed. In order to evaluate stress inten-
sity factors for a slightly curved crack with an ei-
genstrain, a slightly curved crack in a linear iso-
tropic material with a concentrated force is solved
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from a perturbation analysis. A perturbation so-
lution of the stress intensity factors for the slightly
curved crack with the eigenstrain is obtained by
using a body force analogy, which is accurate to
the first order of the parameter representing the
non-straightness. Of particular interest is the effect
of eigenstrains on the crack path stability. The
first order solution for the slightly curved crack
can be used to predict the path of a fracture. It is
shown that for mode I loading, the straight crack
path is stable when 7*<0 and unstable when
T*>0, in which T is the stress parameter of crack
path stability proposed in this paper. The T*
stresses for a crack with steady state growth in a
transforming material as well as in a ferroelectric
material under mode I loading are obtained. The
results show that although the value of applied
T-stress is positive, the straight crack path may
be stable for mode I loading.

2. Asymptotic Problem of a
Curved Crack

Consider the asymptotic problem of a slightly
curved crack in a linear isotropic material as shown
in Fig. 1. The crack tip lies at the point x;=0 and
x2=0, and the crack surface is described by x,=
A(x1). Here we are only concerned with the case
in which A(x1) and A (x;) are small, and O (A) =
o).

The remote fields in the asymptotic analysis are

Tractions vanish on the crack surfaces.

given by the near-tip fields for the crack in the

K, G,(0)+—= Ky &,(0)
42?1' 2mr
+776,8,,

Fig. 1 Asymptotic problem of a slightly curved
crack

linear material.

In isotropic two-dimensional elasticity, stresses
are expressed in terms of two complex potentials
as follows (Muskhelishivili, 1963)

0'11‘1'0'22—2[@( ) (Z>:|,
Q(z2)+(z—2) 0 (2).
Here 03 is the stress. @ (z) and £2(z) are analy-

tic functions of z=x1+7x» and overbar () de-
notes the complex conjugate. The analytic func-

(1)

On+ioe=0(z )

tions generating the stress fields at infinity are ex-

pressed
_ K 1.
®<Z>_2Jﬁ+4T’ o
2(z)= % —LT"", as z — oo,

2/2nz 4

where K denotes the complex stress intensity fac-
tor defined as K*=K;+iKj; and T is the re-
mote 7 -stress which is the uniform part of o1; at
infinity.

The boundary condition on the crack surfaces
leads to the following equation

0(2)+0(2) +e?[Q(2) +(2—2) 0'(2) —0(2) ] =0, (3)

where J is the angle of the crack surface, given by
9=X(x1) to the first order in 1. Making use of a
perturbation expansion in A, the functions @ (z)
and £2(z) can be written as

= @0(2) + @1(2) + O(/iz) 5

(4)
=(2) +2(2) + 0.

Here @y(z) and £(z) are analytic functions of
zero order, and @,(z) and £:(z) are analytic func-
tions of first order A. Using this perturbation ex-
pansion, it can be shown from Egs. (3) and (4)
that the solutions of the zero order in A which cor-
respond to a straight crack, A=0, are

D G
@0(2)-2 T;rz+4 Te,
K= 1 )
“QO(Z):Z 2nz 4

Equating all terms of the order A in Eq. (3) and
solving the first order equation, we obtain
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d)l (Z) +.Ql (Z) = ﬁlx/? o I—2 dt (6)
5 (. K ° 1 AT
o) ~@u(a) = B [ | A fa

For the special case in which the magnitude of
K7t has the first order of smallness, the first order
solution Eq. (6) reduces to

TW
27ifz -

Introducing the cylindrical coordinate (7, d) cen-

‘/—",dt

D1(2) =0:1(2) = (7)

tered at the tip of curved crack, the mode I and
mode II stress intensity factors, K; and Kj; are
defined as

Ki+iKy=lim 277 [Go0 (7, ) +ior (v, w)],
(8)

where @ is the slope of the crack surface at the
crack tip, given by w=A(0) to the first order.
Having found the functions @ (z) and 2 (z) for
the slightly curved crack as above, the stress in-
tensity factors at the crack tip can be evaluated

from Egs. (1), (5) (6) and (8), which results in

K=Kr—3 oK7 +0(R).

Ku=K7i +4 oKF

~Erl

; dt+0(P).

3. Curved Crack with a
Concentrated Force

Consider a slightly curved crack in a linear iso-
tropic material with a concentrated force as shown
in Fig. 2. The concentrated force p=pi+ip. is
embedded in the material at the point z=¢, {=
&1+ i&. The crack surface is described by x.=
A(x1) and tractions vanish on the crack surfaces.
The solution of stress intensity factors due to a
point force acting at position at z={ can be used
as a weight function in determining stress intensi-
ty factors for a curved crack with a distributed
body force.

Using the perturbation analysis, the zero order
solutions of Eq. (3) are well known as (Suo, 1989)
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Fig. 2 Curved crack with a concentrated force

_ -1 [ p  B-4)p B(E=T) pT
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where v is the Poisson’s ratio. Equating all terms
of the order A in Eq.(3) and solving the first
order equation, we obtain

") t>g( )]
O,;(z) +92,(2) ﬁzJ—/ — dt. (11)
in which
glt)=——" Re[L¢ <3—4v)1¢1)(§—?>} (12
aali=) LT = T 0t

where Re denotes the real part. The stress inten-
sity factors at the crack tip can be evaluated from

Egs. (1), (10) and (11), which results in
K=K -3 oK% +0(2),

e
[{11— 11‘|‘ CUKO \/>/ dt‘|‘0(/12)

where K7 and K are the zero order stress inten-
sity factors for the crack with A=0, given by

| {)

427 (1

(3—4v)p , b

e p¢-¢
K?+ZK11 ‘/,? T 2&? (14)

—-) L%
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The stress intensity factors Eq. (13) can be re-
written in the form

Ku=np;, M= (1, II) (15)
in which #¥ M= (I, II) is the weight function

for the curved crack, given by

=1 =2 ol

=iy ong— |2 [ AOLOL 4y "
where

=t | e )

g i = 4@{1—@ {%L & ;?4’” + f&? | an
&) =ﬁ1€e{(&j+z‘5ﬁ) (- et (3;_4%’) " Ef:gl”.

4. Curved Crack with Eigenstrains

We now consider the problem of a slightly
curved crack in the linear material containing a
region A in which an eigenstrain &}; is prescribed,
as shown in Fig. 3. The remote stress fields at in-
finity are given by Eq. (3). The incompatibility of
the eigenstrain distributed in the region A around
the crack tip creates stresses. The stress intensity
factor induced by the eigenstrain can be evaluated
by a body force analogy. Using the body force an-
alogy, it can be shown that the stress field pro-
duced by the eigenstrain distribution is the same
as that produced in the body subjected to a cer-
tain effective body force field. The stress intensity
factors induced by the &}; can be evaluated by
the body force analogy. The stress intensity facto-
rs can be expressed as

Ki=K7 = oKf +AK+0(F),

Ku=K +5 oK?

2 e [CA(D) 2
—/aT /_Wmdt+AK11+O(A),
(18)

where AK; and AKj are the change of the crack

- K K, —u. n-

ol = Glo)+—=6(0)

! N2mr ! JZJTF Y
+7178,6,,

Fig. 3 Curved crack with an eigenstrain

tip stress intensity factors induced by the eigen-
strain. The explicit form of AK; and AKj; is ex-
presses as

ARy=E A/ Ul endA. (M=I1. II). (19)

Here E is the Young’s modulus, and U¥; and U
are the near tip weight functions given by

1
Ut =5, WOt (Rt hith),

20 " (20)
(M=I, IT),

where ( ) ;=0/0&;.

Making use of Eqs. (19) and (20) together with
Eq. (17), we have the change of stress intensity
factors in the form

AK=AK? —3 0AKR,

AKu=AK}; +g WAK?, (21)

I hwarnr,

in which
AR =LE_ [Usresan, (M=1, 1)
M= 1+ kl Ehl 5 =1, ,
A

E
AKi'=—— | U et dA, (M=1, II),
I—H)AO/‘

(22)

AT =l [ ViehdA
TS
E 3740 0 s on a4 o
+l+v 8(1—v) [{eh(£,0%) +ebi(£,07) )

—{eh(t,0%) +e5(£,07)}].
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Here

=St L) (M=1, 1D,
| (23
Vkl=$gj,j5kz‘|‘7<gk,l+gl,k> :

Ao is the area with the prescribed eigenstrain &}
for the straight crack (A=0) and A; is the circu-
lar area with a vanishingly small radius & and
the center at {=¢. Using Eqgs.(17), (22) and (23),
it can be shown that A7T°(¢) is rewritten in the
form :

AT (t) = E /%[—Zei*l(cos 40+cos 26)

4r(1—=0) J o

Ao

—4el sin4@+2eh (cos 40—cos 20) |dA

E 34 €1 ey Lk e
+m 8(1—0) [{eh(t,07) +eh(£,00)}

—{eh(,0") +eh(£,0)}]

(24)

where {—t=pe®.
5. Crack Path Stability

The first order solution for the slightly curved
crack can be used to predict the path of a fracture
as in the work of Cotterell and Rice (1980). We
restrict our consideration to the imperfection for
which K77 differs slightly from zero. It is assumed
that the crack propagates in the direction of K=
0. Assume the equation to the curved crack path
in the form (Karihaloo et al., 1981)

(Ao Sos+as®*+0(b?), 0<s<b
Als) =

Ao, s<0 (25)

where A, J and @ are constants, b is a small ex-
tension from a preexisting straight crack and s=
x1+b. It is noted that the slope of the crack sur-
face at the crack tip is

w=z90+%aﬁ +0(b) (26)

When the magnitude of Kj; has the first order of
smallness, it can be shown from Egs. (18), (21)
and (25) that

/%T*&o)vﬂow), (27)

Kn=K; +§§0K,*+(%aK,*—z\

in which
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Kf=Kr+AK?,
Ki=Ki +AKj, (28)
T*=T>+AT",
where AT*=AT°(0"). Now, imposing the cri-
terion Ky =0 along the crack growth path, the con-

stants & and @ are determined from the ordered
conditions as follows :

b’ S=— 2K
I
(29)
py2 a=£ lﬂ&)
’ 3 Ve KI* o

The result shows that the slope of crack extension
increases as the crack propagates when 7T*>0,
whereas it decreases when 7"*<0. Thus, for mode
I loading, the crack path is stable when 7*<0
and unstable when 7°* >0. Before proceeding, it
is worth mentioning that the crack path stability
parameter, 7 * does not have the meaning of the
T -stress for the crack with eigenstrain. The 7°*
stress, however, reduces to the 7 stress when there
is no region with eigenstrains.

6. T* Stress

6.1 Elastic material with a transformation
zone
Consider a crack with steady state growth in a
composite, as shown in Fig. 4. The composite con-
sists of a linear elastic matrix material and parti-
cles which undergo a dilatation. The remote stress
._ K

07 =—=—F(0)+776,8,
L N 2mr

i

K-
a; =—f"_(ff'.(ajl 76,6,
N2rr ' o

Fully transformed zone

Partially transformed zone

(a) (b)

Fig. 4 Steady state crack growth in a composite

(a) Fully transformed zone
(b) Partially transformed zone
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fields at infinity are given by

Kr
V2mr

where 64;(0) is the universal distribution func-

05 = 5‘{;(6) +T°°8i18j1, (30)

tion of stress. According to Budiansky et al.(1983),
the dilatant transformation criterion has the fol-
lowing form :

On=0n, (31)
where oy, is the mean stress given by ¢n=1/30x
(k=1, 2, 3) and ¢% is the critical mean stress. In
the transformed zone, the eigenstrain tensor in-
duced by the dilatant transformation can be writ-
ten as

6;}26*81} (32)

Here
*=%(H—v) (33)

where e* is the transformed dilatation of the com-
posite.

For a super-critically transforming material, the
composite undergoes the full transformation and
the eigenstrain has a constant value in the fully
transformed zone, e*=&"=(1+0v)e’/3 where e’
is the complete transformed dilatation of the com-
posite. Applying the superposition as shown in
Fig. 5, we can obtain the solution for the crack in
the material with the critical mean stress oy, under
the remote stress fields Eq. (30) using the solution
for the crack in the material with the critical mean
stress ox’, given by on’=o05— (1+v) T=/3, un-
der the remote stress fields Eq. (30) with 7°°=0.
Here 07°>0 is assumed. Budiansky et al.(1983)
solved the problem with 7°°=0. Their solution is

o7 =—SL_g!(0)+T"8,5,

used in evaluating the 7 stress in this study. The
form of the boundary of the fully transformed
zone is expressed as

r=R(6) =HR(0) (34)
where H is the half height of the wake and

0

cos® 3, 0<| 0| <%
_ 3ﬁ 3
R(0)= 1 i (35)
_— —< <
sm[g] 3=I01=7

Although the form of the transformed zone bound-
ary depends on the redistribution of the stress
due to the transformed dilatation, Budiansky et
al.(1983) showed that the shape of the trans-
formed zone F(6) obtained by using the stress
field Eq. (30) is a very good approximation and
the half height H of the zone depends on the
material parameters. From Egs. (24), (34) and
(35), it can be shown that

E&”

TR [:COS 20 R(0)do. (36)

It is noted that AT* does not depend on H.
Performing numerically the integral in Eq. (36),

AT*=

we have from Eq. (28)

1.91Ee”
z(l—2v%) "

Next, we consider a crack in a composite with both

T*=T"— (37)

a fully transformed zone and a partially trans-
formed zone, as shown in Fig. 4. The distribution
of eigenstrain in the transformed zone is assumed
to be expressed as

T *<
o= Ty (38)
e*(

Fig. 5 Application of superposition
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Here

r*=H and »*=1W are the boundaries of fully
transformed zone and partially transformed zone,
respectively. ]?(49) is a dimensionless function de-
scribing the shape of the transformed zone bound-
ary. Making use of Egs. (24), (38) and (39), we
obtain

EeT

AT*=— € 5[ cos 20 In R(6) do. (40)

In obtaining Eq. (40), the relation

& wrr er*) .

[ £+ cos20aA= [ [ "cos 2000 T ar'=0, (41)
where Ap is the partially transformed area, has
been used.

For a sub-critically transforming material, the
composite undergoes the full transformation or par-
tial transformation. Budiansky et al.(1983) solved
numerically the problem with 7°=0. Their so-
lution showed that the distribution of eigenstrain
in the transformed zone is written approximately
as Eq. (38) with R(6) ~ R (6). Furthermore, the
contribution of the active zone to AT™* is less
than that of the wake zone. Thus, the predicted
result Eq. (37) may be valid approximately for
the sub-critically transforming material.

Material parameters for a typical transforming
material, for instance, a two phase zirconia sys-
tem are £=200GPa, v=0.3 and ¢"=1.5X1072
(Budiansky et al., 1983). The contribution of trans-
formation to 7°* is about A7 *=—870 MPa. For
mode I loading, the straight crack path is thus
stable when 7°*<870 MPa. Typically, the mag-
nitude of AT™* due to the dilatant transformation
is larger than the applied T.

6.2 Ferroelectric material

Consider a crack with steady state growth in a
ferroelectric material, as shown in Fig. 6. The
remote stress fields at infinity are given by Eq.
(30). Applying the superposition, we can obtain
the solution for the crack in the material under
the remote stress fields Eq. (30) using the solution

or =K 5(60)+T"8,5,
Tr )

Fig. 6 Steady state crack growth in a ferroelectric
material

for the crack in the material under the remote
stress fields Eq. (30) with 7*=0. Reece and
Guiu (2002) solved the problem for the material
ideally poled along the positive x; direction under
T==0. Their solution is used in evaluating the
T* stress in this study. The form of the boundary
of the domain switching zone is expressed as

r=R(0)=HR(0), (42)
where H is the half height of the wake and
sin® 0 Sinz% o
oo e 0=lI=T
R(0) = sin®<-sin® =~ . (43)
1 2r
—— 22 L]0l
sin| 8|’ 5 <|0|=x

In obtaining Eq. (43), the switching criterion bas-
ed on shear stress has been used and 2.+ 7>
0 where 7. is the critical shear stress is assumed.
In the domain switching zone, the eigenstrain
tensor due to the domain switching is given by

*

611:—65, 6;2=€g, 81‘1:0. (44)

Here ef=ces where ¢ is the volume fraction of
switching and &s is the spontaneous strain asso-
ciated with domain switching. From Egs. (24),
(42) and (44), it can be shown that
T T ~

Eieszf cos 40 In R(9)do
7T(1 — 0 ) -7
_3—4y E&l

21—

AT*=
(45)
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Performing numerically the integral in Eq. (45),
we have from Eq. (28)

T*=T°°—<2'56+ 3—4yp ) lziegz.

Ve 2 (46)

Material parameters for a typical PZT material
are =77 GPa, v=0.25, £=0.005 and ¢=0.1
(Schaufele and Hardtl, 1996 ; Reece and Guiu,
2002). Although the value of applied 7 stress
is positive, the straight crack path is stable for
mode I loading when 7°<75 MPa.

7. Concluding Remarks

A slightly curved crack with an eigenstrain in a
zone attending the crack tip is investigated. Solu-
tions for a slightly curved crack in a linear mate-
rial subjected to asymptotic loading at infinity
as well as for a slightly curved crack in a linear
material with a concentrated force are obtained
from perturbation analyses, which are accurate
to the first order of the parameter representing
the non-straightness. Stress intensity factors for a
slightly curved crack with an eigenstrain are ob-
tained from the perturbation solutions by using a
body force analogy. Of particular interest is the
effect of the eigenstrain on the crack path stabili-
ty. A new crack path stability parameter T is
proposed for a crack with an eigenstrain. It is
shown that for mode I loading, the straight crack
path is stable when 7*<0 and unstable when
T*>0. The path stability of a straight crack with
steady state growth in a transforming material as
well as in a ferroelectric material is examined.
The T* stresses for the cracks with steady state
growth under mode I loading are obtained. The
results show that the change of 7* due to the
eigenstrains induced by dilatant transformation
and domain switching has a negative value. This
implies that the straight crack path may be stable
under mode I loading when the applied T stress
has a small positive value.
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